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ABSTRACT 

This report presents results from a simulation of an amplitude comparison 

monopulse system employing pulse integration (multiple pulses). Maximum- 

likelihood-angle estimators and approximations to them are derived. The 

accuracies (precision and bias) of these estimators are obtained by computer 

simulation for coherent and incoherent processing, and targets located on- 

and off-no re sight. Results are presented as functions of signal-to-noise 

ratio and number of pulses integrated. The effects of imperfect knowledge 

of target doppler, phase, and amplitude are included. Theoretical bounds on 

the precision of the estimators are derived and compared with the simulation 

results. 

Accepted for the Air Force 
Joseph R. Waterman,  Lt. Col., USAF 
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MULTIPLE-PULSE    MONOPULSE   ACCURACY 

I.      INTRODUCTION 

One of the basic radar functions is angle measurement which,   in its grossest form,   is 

accomplished by radiating and receiving through a directive beam.     If a target is detected,   its 

spatial direction is taken to be the direction in which the beam is pointing.    Because the beam 

pattern is relatively flat over some suitably defined beamwidth,   the angle measurement precision 

is on the order of one beamwidth.    That is,   all one can really say is that the target is somewhere 

within the angular extent of the beam. 

To improve this situation,   a technique referred to as beam-splitting is commonly employed. 

The essence of this technique is to employ two beams.    One beam pattern is still relatively flat 

over an angular extent corresponding to the basic antenna directivity.    The second beam has a 

pattern which is relatively linear in angle over the extent of the first beam.    Targets are detected 

in the flat beam and their spatial angles are measured by noting the relative amplitude of the sig- 

nal in the linear beam and the flat beam.    To the extent that the flat beam is really flat,   and that 

the variation of the linear-beam pattern with angle is known,  this technique appears to refine 

the precision of the angle measurement to well below a beamwidth.    Among the basic limits to 

this precision are: 

(a) Uncertainties in the shapes of the set of beams. 

(b) Unknown offsets between the true and intended pointing directions 
of the beams. 

(c) Random noise additive to the received signals. 

(In addition,   contributions may include target glint or phase center motion,   amplitude fluctua- 

tions which at least cause the signal-to-noise ratio (SNR) to vary,   etc.) 

The results reported below pertain to the precision limit imposed by random noise and, 

more specifically,  to the effects on this precision of combining the data from a sequence of radar 

transmissions.    At the verbal level,   a number of questions come to mind.    How should the am- 

plitudes and phases of the beam signals on a single transmission be combined?   How do the pre- 

cision and accuracy of the angle estimate depend on SNR?    How should the amplitudes and phases 

from multiple transmissions be combined?   What is meant by "incoherent" and "coherent" proc- 

essing in this context?    How do the precision and accuracy vary with the number of pulses "inte- 

grated"?    In the sections that follow,   we will describe an analysis which provides a basis for 

answering these questions,   and will present computer simulation (Monte Carlo) results based 

on this analysis. 



Before turning to these results,  we will make more explicit what they do not pertain to 

(refer to Fig. 1).    "Angle estimation" denotes the process by which signals in the set of beams 

from N radar pulses are combined to produce an estimate of the angular location of a target. 

The target is assumed to be stationary in space over the time required to collect the N pulses. 

"Angle tracking" denotes a process in which a sequence of angle estimates is processed or fil- 
tered (either by analog or digital means,   or both),   resulting in a "steering command" which 
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Fig. 1 .    Functions involving angle measurement. 

moves the antenna beam with the goal of following target motion and thus not "breaking track" 

or losing the target.    "Track prediction"  denotes a process in which a sequence of angle esti- 
mates is combined with range and possibly range-rate measurements,   and with a model of target 
dynamics,   to produce an extrapolation of target position at another time.    The track-prediction 

algorithm may also serve as the angle-tracking algorithm by producing "short-term" extrapola- 
tions for "immediate" use in steering the beam,   or the angle-tracking algorithm may be distinct, 

perhaps simpler and using less data and,   in the case of a dish,  using analog processing. 

In these terms, our results do not pertain to track prediction and, except for a few words, 

do not pertain to angle tracking. They pertain to the effects of additive random noise on angle 

estimation. 

II.    MONOPULSE ANGLE  ESTIMATORS 

This section describes a set of angle estimators whose statistical properties (mean and 

variance) will be demonstrated using simulation results appearing in the following sections.    A 
comprehensive description of these estimators is presented in Appendix A. 

The basis for our results is found in a paper by Hofstetter,    wherein he solves (as a sub- 
problem) the following problem.    Consider a set of beams in which a target return may be pres- 
ent.    N radar pulses are to be processed.    The target,   if present,   is assumed to be fixed in 
space during the time required to transmit and receive the set of pulses.    Its amplitude is un- 
known but constant (see Sec. III-A-1-d),   and its doppler frequency is assumed known (see 
Sec. IV-A-3-b).    On a given pulse,  the carrier phase of the return signal is unknown but the 

same in all the beams.    (We are assuming an amplitude-comparison monopulse system,   imply- 

ing a design in which there is no dependence of signal time-of-arrival on spatial angle in any 
beam.    Thus,   the value of the phase does not depend on the true target spatial angle or on which 
beam is examined.    The phase may be thought of as depending on the fine range position of the 
target.)   Over a set of pulses,   two cases (incoherent and coherent) are considered for the phases. 

In the incoherent case,   no relation between the phases on any two pulses is assumed (see Sec. III). 



In the coherent case,  the phase angle is unknown but assumed constant over the set of pulses 

(see Sec. IV,  particularly IV-A-3).    Added to the received signals is random noise,  assumed in- 

dependent from beam-to-beam,  independent from pulse-to-pulse,  Gaussian,  and having zero 

mean and known variance. 

Given this set of assumptions,  Hofstetter derives the "generalized likelihood ratio" detec- 

tion function and parameter estimates.    In the present case,  the receiver is assumed to compute 

the likelihood ratio (the ratio of the probability of seeing the observed data given that a target 

is present divided by this probability given that noise alone is present) with the unknown target 

attributes of amplitude,   carrier phase,   and spatial angle as parameters.    The receiver then 

maximizes the likelihood ratio with respect to the unknown parameters,   and compares the max- 

imum with a threshold.    If the threshold is exceeded,   a target is considered present,   and its 

parameters (in particular,   its spatial angle) are taken to be those values which maximized the 

likelihood ratio. 

For the special case of two beams (one beam constant-vs-angle and the other linear in angle), 

each a function of the same single spatial angle 0,   the angle estimates for the incoherent and 

coherent cases are:    6 = the value of 6  producing the maximum 
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th In these expressions,   y.,   denotes the complex amplitude of the received signal on the k 

pulse (target plus noise) at the output of a matched filter in the linear or difference channel, 

|y., |  and <p.,   being its amplitude and phase angle,   respectively.    The complex amplitude in the 

constant or sum channel is denoted by y_, . 

In addition to these estimators,   a pair of approximate estimators are derived which take 

the form 
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Note that in the coherent estimators [Eqs. (2) and (4)],  the assumed constancy of phase angle 

between pulses is evidenced by vectorial addition of the beam signals from different pulses.    In 



the incoherent estimators [Eqs. (1) and (3)],  it can be seen that no relation between the phase 

angles on different pulses is assumed,  although the phase angles are still used on a pulse-by- 
pulse basis. 

Prior to comparing the performance of the exact and approximate estimators,  the most 

obvious difference between them is that the exact estimators require a search over the angle ©, 

while the approximate estimators do not.    That is,  the approximate estimators evaluate a single 
function of the received data and produce an estimate.    The exact estimators must evaluate a 

function of the received data for a number of values of the parameter 6 to produce an estimate. 

In practice,   the granularity of the search over a discrete set of 6 values should be no larger 

than,   and preferably smaller than,  the inherent precision of the estimator.    Otherwise,  the re- 

sultant precision will be dominated by quantization error.    The search requirement does not 
imply any innate difference in the maximization problem between the exact and approximate 

cases.    It is a practical matter dictated by the inability to solve Eqs. (1) or (2) in closed form. 
Ideally,   one would like to determine the probability density functions for these estimates, 

as a function of true target angle ©,  SNR,   and number of pulses integrated.    In practice,   it is 
not even feasible to obtain by analysis their means and variances.    We have therefore obtained 

these quantities by simulation,   and present the results below graphically.    The basic format is 
a log-log plot whose vertical axis is standard deviation (and sometimes bias) of the estimator 

in normalized units.    The horizontal axis is number of pulses integrated,   increasing to the left 
due to the vagaries of graph paper.    Each plot contains a family of curves parameterized on 

SNR.    The direction of good estimator performance is down on the graph,   i.e.,  in the direction 
of small standard deviation and bias.    The normalized angle unit on the vertical axis should be 

interpreted as fractions of a beamwidth.    To make this more specific,   refer to Fig. 2.    The sum 

beam is flat and of unit amplitude.    The difference beam is linear and crosses unity amplitude 
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Fig. 2.    Beam patterns. 

at one unit of angle (ordinarily taken as the effective limit of operation).    In fact,  Eqs. (1) through 
(4) have been written with this convention implicit.    The single-sided beamwidth is taken to be 

the point where the sum- and difference-beam amplitudes are equal,   i.e.,   one angular unit.   With 
this definition of beamwidth,  the vertical axis on the plots is strictly measured in fractions of 
a beamwidth.    Thus,   if the beamwidth is half a degree,   and the standard deviation of the estimate 
is 0.1 normalized unit,   the standard deviation in degrees is 0.05. 

The SNR referred to as E/N    on the plots is equal to the ratio of the voltage due to signal 
squared divided by the variance of the noise,   both measured at the matched-filter output in the 

sum channel at the sampling time corresponding to a target centered in range.    The variance 
is that of the RF (or IF) noise or either of its quadrature components,  which is half the variance 
of the complex noise envelope. 



III.   INCOHERENT PROCESSING 

A.    Approximate Estimator 

1,      On-Boresight Results 

a.   Basic Performance 

The basic performance of the approximate incoherent estimator with a true target angle of 

zero is shown in Fig. 3.    We note that 

(1) The estimate is unbiased. 

(2) As the number of pulses  N and the per-pulse SNR E/N    are increased, 
the standard deviation is asymptotic to 

(5) 
VNJETN^ 

(3)    The precision therefore approaches a value corresponding to averaging N 
single-pulse estimates. 

b. Effect of Using Phase for Sense Only 

The term cos (<p..  - V?k' *n ^' '^' ^as *;wo functi°ns.    Primarily,   it provides sense infor- 

mation,   i.e.,  on which side of boresight the target is located.    One can see that when the noise 

is small the phase angles <p,,   and (p?,   are determined primarily by the target component of the 

beam signals,   and will therefore be close to 0 or i depending on which side of boresight the tar- 

get is located.    Secondarily,   the term provides amplitude weighting.    To see the effect of this 

weighting,  the term cos (if.,  - <P?,) can be replaced by sgn [cos (<p.,  — <P7^)].   preserving the 

sense information and removing the amplitude weighting.    Figure 4 shows the result of this 

change.    We note that: 

(1) The estimate is still unbiased. 

(2) The precision is degraded quite uniformly over the whole plot by a 
factor of about 1.4. 

c. Expurgated Estimate 

In the results presented above,  no attempt was made to discard estimates that were obviously 

dominated by noise,   that is,   occurrences when the estimate fell outside the monopulse range of 

— 1 ^ B-^ 1.    This accounts for the precision at 1 pulse and low E/N    being worse than a beam- 

width.    In Sec. d which follows,   we will present results on the effects of amplitude fading,  where 

there would be a greater tendency toward very "anomalous" estimates because of the probability 

of very low target amplitudes.    To make a better comparison,   we show in Fig. 5 how the results 

of Kig. 3 change when we discard all estimates which fall outside the range ±1.    Related results 

are shown in Fig. 6 where we plot the probability of anomaly vs E/N    for the single-pulse esti- 

mator.    We note that: 

(1) There is essentially no change for E/N    ~%. lOdB. 

(2) For E/N- - OdB,  there is a change at 1 0 pulses or less,  with the precision 
being improved to values below one beamwidth. 

(3) Correspondingly,  the probability of getting an anomalous estimate decreases 
from about one in five at OdB to the order of 1 percent at lOdB,   for the 
single-pulse estimator.    Essentially,   no anomalies occur at 10 pulses or 
more,   down to E/N    of OdB. '    o 
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Fig. 6.    Probability of anomaly for expurgated single-pulse estimator and nonfluctuating target. 

d.    Expurgated Estimate in the Presence of Amplitude Fading 

To explore the effect of violating the assumption that the target amplitude is constant,   we 

computed the performance of the expurgated estimator on-boresight for a target whose cross 

section varies with an exponential probability density.    If the cross section is represented by x, 
and has mean value x, then the density function is 

•(x/x) p(x) = Y e (6) 

Figure 7(a) shows the results for a scan-to-scan fade (Swerling I) in which the cross section is 
random but remains constant over the set of  N  pulses used to make the estimate.     Figure 7(b) 
shows the corresponding results for a pulse-to-pulse fade (Swerling II) in whichthe cross section 
is random and takes on an independent value on each pulse.    The corresponding probability of 
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(o) Scan-to-scan fade with exponential RCS 
density (Swerling I). 

(b) Pulse-to-pulse fade with exponential RCS 
density (Swerling II). 

Fig. 7(a-b).    Incoherent integration —on-boresight, angle estimate expurgated at ±1 beamwidth. 
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Fig. 8.    Probability of anomaly for expurgated single-pulse estimator and fluctuating target. 

anomaly for the single-pulse estimate,  which is of course the same for the scan-to-scan and 

pulse-to-pulse fades,   is shown in Fig. 8.    In Figs. 7(a) and (b),  E/N    represents the single-hit 

SNR on the mean cross section.    For the exponential density function,  the median or 50-percent 

point is 0.69 times the mean.    Thus,  E/N    on the median is 1.6 dB less than on the mean.    We 

note that: 

(1) For the scan-to-scan fade,   even with the anomalous estimates removed 
by expurgation,   it is the low cross-section probability of the fade that 
dominates,   not the high cross-section probability.    This is evidenced 
by the fact that at 0-dB E/N0, there is no difference between Figs. 5 
and 7(a),   so that the probability of high cross section is not helping, 
while at 30 dB the precision with fading is worse than without fading, 
by a factor between 2 and 3,   so that the probability of low cross section 
has a degrading effect. 

(2) The pulse-to-pulse fade is less detrimental to the precision of the esti- 
mate.    While the increase in degradation factor (relative to no fading) 
with E/N0 is,   of course,   the same as for the scan-to-scan fade at one 
pulse integrated,  the degradation decreases with the number of pulses 
integrated,   and is small beyond 10 pulses.    The pulse-to-pulse fade 
apparently reduces the effectiveness of small cross-section hits in 
producing bad estimates. 

(3) The increased probability of seeing a low cross section relative to the 
nonfading target manifests itself in a slower decrease of probability of 
anomaly with E/N0 for the single-pulse estimator.    At 1 0 dB,  this prob- 
ability is on the order of a percent for the fixed target.    It is between 
4 and S times higher for the fading target at this point,   and another lOdB 
of SNR is required to reduce it to 1 percent.    As with the fixed target, 
there is essentially no probability of anomaly if 10 or more pulses are 
integrated. 

(4) With the scan-to-scan fade,  the improvement in precision between 1 and 
100 pulses is such that it would be slightly better to average 100 individual 
single-pulse estimates at E/N0 of lOdB or less,  while there would be no 
difference at 20 dB or more (averaging individual estimates reduces the 
standard deviation as 1/VN"). 

With the pulse-to-pulse fade, averaging individual single-pulse estimates 
would be slightly superior at an E/NQ of 0 dB, and progressively inferior 
as E/NQ increased from lOdB upward. 

In either case,   a cost involved in averaging single-pulse estimates is 
that the probability of anomaly is essentially zero when 10 or more pulses 
are integrated,  while it is nonzero for single-pulse estimates.    It would 
therefore require somewhat more than 100 hits to produce 100 expurgated 
single-pulse estimates. 



2.     Off-Boresight Results 

a.    Basic Performance 

When the true target angle 9 is moved off the monopulse boresight (i.e.,  the direction in 

which the center of the set of beams is pointed),  the behavior of the approximate estimator be- 

comes more complicated.    Figure 9(a) shows the performance when the target is halfway between 

the boresight and the edge of the beam (9 = 0.5),  while Fig. 9(b) shows the corresponding results 

for the target at the edge of the beam (9 = 1).    We note that: 

(1) The estimate is biased,   and the bias is directed toward boresight.    That 
is,   if the true target angle is a positive value,  the mean value of the esti- 
mate is a smaller positive value;   if the true angle is negative,   the mean 
value of the estimate is negative and of smaller magnitude. 

(2) For a given target angle and number of pulses integrated,   the magnitude 
of the bias (both absolute and relative to the standard deviation) increases 
with decreasing E/N  . 

(3) For a given target angle,   the bias is essentially constant between 1 and 
100 pulses at low E/N0 (0 and 3dB).    At lOdB or more,  the bias builds 
up from a low value at one pulse to a higher value at 10 pulses and re- 
mains essentially constant out to 100 pulses. 

(4) Consequently,   if one is starting from a fairly good SNR (10 dB or more), 
averaging a number of single-hit estimates may be preferable to forming 
one multiple-pulse estimate.    For example,   if E/N0 is lOdB and 100 
pulses are processed with the target near the edge of the beam,  a 100- 
pulse estimate would have precision - 0.04 and bias - 0.1.    By compari- 
son,  the average of 100 single-pulse estimates would have precision - 
0.07 = (0.7/VTM) which is slightly degraded,   and bias =* 0.0035 which is 
a reduction by about a factor of 30. 

(5) For a given E/NQ and number of pulses integrated,   the bias magnitude 
varies linearly with true target angle off-boresight (see Fig. 10). 

(6) In addition to the bias effects,   the standard deviation of the estimates 
degrades as the true target angle increases off-boresight.    At the edge 
of the beam,  the degradation factor is about 1.4. 

To make plausible a mechanism for how the bias arises,   the following argument can be used. 

Consider a target on the positive side of boresight,   near the edge of the beam.    The sum- and 

difference-channel signals on a single pulse can then be visualized as parallel vectors of unit 

length,   as shown in Fig, 11.    To each of these vectors is added an independent Gaussian noise 

vector.    If the SNR is near 0 dB,   the rms length of these noise vectors is on the order of 1. 

(Strictly speaking,   our convention has been that E/NQ = 0 dB implies that the ratio of the noise 

quadrature components to the signal vector is 1,   so that the ratio of the lengths of the noise and 

signal vectors is \T2~ at OdB.)   The phase angle of the noise vector in each channel is uniformly 

distributed between ±TT. 

The resultant phase angle in each channel varies (nonuniformly) over at least ±TT/2.    The 

difference between the phase angles in the two channels,   which is the argument of the cosine 

term in Eq. (3),   is therefore random (although not uniformly distributed) over ±7r.    The upshot 

is that there is significant probability of the cosine term being negative and producing estimates 

near -1,   while the target is located near 9 =  +1.    The result is to bias the estimate down from 

+1 to a lower value.     Figure 12 shows how the probability of positive and negative estimates 

varies with E/N    and 9.    While there is a higher probability of the estimate having the correct 

sign further from boresight,   the effect of a sign reversal is greater,   and the resultant bias mag- 

nitude is greater. 



o  10 

\ 
\ 

• I I 

- |l6-9-2179|   " 

 BIAS 

SINGLE- HIT 

• 

E/N0  (dB) ^^   ~ x>_ '         -• 
3 • • -y^-~ y\ 

ft ' 
0 
rr ~*S                   / 
or _ 
IU 

_1 
19 10 • -^ ~^^       *~~                             ^ •^ ~ 
<i 0 **^S^        >/                  "N^— - 

3 

N 10 ^    ^         \ 
- 

1 ^r , 
<1 > 
n- /-^ \ - 
z 20 • 

V w2 20 ?•      _ 

\ V 
\ 

10 

NUMBER OF PULSES NUMBER OF PULSES 

(a) Target halfway out of notch. (b) Target at edge of notch. 

Fig. 9(a-b).    Incoherent integration. 

0.50 

OFF-BORESIGHT 

Fig. 10. Bias magnitude variation: 0-and 3-dB curves are independent of number 
of pulses; 10- and 20-dB curves are for 10 pulses or more (bias essentially disappears 
somewhere between 1 and 10 pulses at these E/N   's). 

10 



.— 
/ 

/                     
| 18 9!iai 

/NOISE   \ 

—"l"1"-" 
/ VECTOR   i 

SUM 
SIGNAL 1 

\         VECTOR ; 1 \ 
\ \ 

/ 

PHASE   OF \ONE-SIGMA 
RESULTANT '     CIRCLE 

\ 
I       DIFFERENCE 

/ 

Fig. 11.    Phase-angle geometry. 

SINGLE-HIT    E/N„   ld8) 

Fig. 12.    Algebraic sign behavior of single-hit estimator. 

1 I 



18-9-?»3 
    SIGMA 

 BIAS (negative) 

10 10 

NUMBER   OF   PULSES 

IO'LU 

10s 

NUMBER   OF   PULSES 

(a) Target halfway out of notch. (b) Target at edge of notch. 

Fig. 13(a-b).    Incoherent integration, majority rule phase estimator. 

b.    Majority Rule Sign Determination 

Since the bias seemed to arise from the behavior of the phase angles on each pulse,  a mod- 

ified estimator was examined in which the sign of the estimate was determined by noting which 

sign occurred in a majority of the  N pulses integrated.    That is,  the terms in the sum comprising 

the numerator in Eq. (3) were added with positive signs.    The estimate was then made negative 

if more than half the terms had been negative individually.    The resulting performance is shown 

in Figs. 13(a) and (b) for true target angles of 0.5 and 1,   respectively.    The results indicate that 

while the performance improves in certain respects,   the modification is no panacea.    We note 

that: 

(1) For a target halfway out from boresight (6 = 0.5),  there is little effect 
on the bias at 10 dB or above,   where the bias is already relatively small. 
There is no effect on the precision.    At 0 dB,  the bias is driven down as 
the number of pulses is increased above 10.    However,   the precision is 
degraded,   although not by the same factor.    For example,   at 50 pulses 
integrated,   the bias is reduced by a factor of about 15 while the precision 
is degraded by a factor of about 3.    At 1 0 pulses integrated,   the bias is 
unchanged while the precision is degraded by a factor between 2 and 3. 
Furthermore,   when enough pulses are integrated,   the magnitude of the 
bias starts back up and the sign of the bias is changed (away from 
boresight). 

(2) For a target at the edge of the beam (G = 1),   where the absolute magnitudes 
of the bias are greatest,   there is essentially no effect at 1 0 dB or above. 
At 0 dB,   there is a slight reduction in bias as the number of pulses is in- 
creased,   amounting to a factor of 2 at 100 pulses.    The precision is de- 
graded by,   at most,   a factor of 2 at ~10 pulses,  with less degradation as 
the number of pulses is reduced toward 1 or increased toward 100. 

12 



c .     Kffect of Bias 

It is generally assumed that bias in an estimate is undesirable,   and that ideally one wants 
an unbiased and consistent estimate.   While this view seems reasonable, it does not preclude an 

analysis of any particular case to determine the effects of bias vs precision.    It may be that the 

bias is removable in some way,   or that its effect is unimportant.    In Sec. I,  we limited the scope 
of this study to angle estimation,   so that we have indicated the presence of bias in an angle esti- 

mate without commenting on its effect on angle tracking or track prediction.    To determine its 

effect requires specifying algorithms for tracking or prediction.    Without delving into this,   we 

discuss below one simple example to exemplify such an analysis. 

The example concerns angle tracking,   or keeping the target in the beam.    Consider a simple 

angle-tracking scheme which,   after each estimate is made,   centers the beam on the angle indi- 
A 

cated by the latest estimate.    Thus,   if the latest estimate is G = 0.5 (target one-half beamwidth 

to the right of current pointing direction),   the beam is moved one-half beamwidth to the right 
before making the next estimate.    Assume that the basic approximate incoherent estimator is 
being used [Figs. 3,   9(a) and (b)],  that E/N    is OdB,   and that 100 pulses are integrated.    Assume 
also that when the first detection and estimate are made,   the beam happens to be pointed so that 

the target is located at © = 1.    For this situation,   the precision is about 0.07 5 (less than a tenth 
of a beamwidth) and the bias is -0.6,   i.e.,   the mean of the estimate is 0.4.    If the estimate were 
unbiased and had the same precision,   the beam would immediately be centered on the true target 

angle ± one-tenth of a beamwidth,   with high probability.    The beam would tend to remain centered, 
except for an occasional random kick-out,   after which it would immediately be recentered with 
high probability.    With the bias present,   the beam would be moved to the right 0.4 unit with high 

probability after the first estimate.    Thus,   the bias in the second estimate would be -0.36 (true 
6 - 0.6,   bias - -0.6 9);   after the second estimate,   the beam would be moved about 0.24 unit to 
the right,   placing the target 0.36 unit to the right of center.    Continuing this sequence,   we see 
that the complete sequence of angle offsets (true target angle relative to beam center) would be 

1,  0.6,  0. 36,  0.22,  0.1 3,  0.08, . . . 

smeared by the zero mean component of the error.    In the absence of bias,   the sequence would 
be 

1. 0, 0, 0. 0, 0, . . . 

smeared by the zero mean component.     Thus,   whenever the target is located near the edge of 

the beam,   the effect of the bias is to increase the time required to center the beam on the target. 

The self-centering action of the tracking loop appears to minimize the steady-state effect of the 
bias. 

B.    Maximum-Likelihood Estimator 

1.      On-Boresight Results 

The basic performance of the maximum-likelihood estimator when the true target angle is 
zero is shown in Fig. 14.    We note that: 
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The estimate is unbiased. 

At 1 0 dB or more,   the precision is essentially equal to the precision of 
the approximate estimator,  with the approximate estimator being slightly 
superior. 

At OdB,  the approximate estimator is superior by an amount which in- 
creases as the number of pulses increases,   exceeding a factor of 2 at 
1 00 pulses. 

The fact that the approximate estimator outperforms the estimator it is approximating con- 

cerns the off-boresight performance of these estimators.    Section III-C below,   dealing with the 

theoretical bounds to the precision of the estimators,   will support the simulation results. 

Briefly,  there are two factors that support these results.    First is the fact that the maximum- 

likelihood estimate in the incoherent case,  while "asymptotically unbiased," is not "asymptotically 

efficient,"  i.e.,   does not have a precision converging to the Cramer-Rao bound for unbiased esti- 

mates as  N  increases.    Second,  because of its off-axis bias,  the approximate incoherent estima- 

tor is not constrained to lie above the same bound which is obeyed by the maximum-likelihood 

estimate.    In fact,  the relevant bound on the approximate estimator is lower.    These two facts 

leave theoretical room to admit the simulation results. 

2.      Off-Boresight Results 

Figures 15(a) and (b) show the performance of the estimator when the target is located off- 

boresight at angles of 0.5 and 1,   respectively.    We note that: 

(1) The estimates are essentially unbiased.    At OdB,  there is a slight bias 
in the single-pulse estimate,  which disappears as pulses are integrated 
and is undetectable at 1 0 pulses.    At lOdB or more,   there is no bias 
detectable even in the single-pulse estimate. 

(2) The precision again converges to that of the approximate estimate as E/N 
is increased,   with virtually no difference at 20 dB and a slight advantage   ° 
to the approximate estimate at lOdB. 

(3) At OdB,   the approximate estimator is again superior by an amount which 
grows to about a factor of 2 at 1 00 pulses. 
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Fig. 15(a-b).    Optimum (angle search) incoherent estimator. 

C.    Theoretical Bounds on Precision 

The results presented thus far were obtained by simulation.    This was dictated by the fact 

that it was not feasible to compute statistics of the estimators analytically.    However,   it is fea- 

sible to compute lower bounds to the precision of the estimates which are unbiased at any value 

of O analytically.     It is also possible to compute lower bounds on precision for the estimates 

which are biased off-boresight using a combination of analysis and the bias results from the sim- 

ulation.    It is desirable to compute these bounds as a check,   to show that the simulation results 

obey the bounds and converge to them as limits.    We defer a detailed description of the analysis 

to Appendix B,   and present in this section the results of the analysis. 

1.     Hounds on Maximum-Likelihood Incoherent Estimator 

In Appendix B,   we show that the precision (standard deviation) of this (or any) unbiased 

estimator is bounded from below by 

I* 
1 

E/N (i + e 
1/2 

(7) 

where   N   is the number of pulses integrated,   E/N    is the SNR,   and  9   is the true target angle 

off-boresight.    This bound is plotted in Fig. 16.     Comparison with Figs. 14 and 15(a) and (b) 

shows the essential agreement of the simulation results with the bounds.    We note that: 

(1) The simulation results lie above the bounds at OdB,   move closer at lOdB, 
and are essentially converged to the bounds at 20 dB,   for any N. 

(2) The precision does not converge to the bound as N is increased when E/N0 

is small (compare at OdB,   100 pulses).    That is,   the maximum-likelihood 
estimator- is not asymptotically efficient in this case.    The subtlety respon- 
sible for this result is that the N observations are not identically distributed. 
Each sample contains a distinct phase shift A\^, anc' therefore a different 
mean (see Appendices A and B).    The proof that maximum-likelihood esli- 
mates are asymptotically normal,   unbiased,   and efficient depends on the 
assumption that the samples are identically distributed.2 
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2.      Bounds on Approximate Incoherent Estimator 

This bound is more complicated to obtain,   and requires a knowledge of the bias variation 

vs angle of the estimator-.     The presence of bias affects the bound even for G = 0,   the angle at 

which the estimator is unbiased.    In Appendix B,   the bias data from the simulation are combined 

with analysis to produce the bounds shown in Figs. 17(a) through (c) (G = 0,   0.5,   and 1,   respec- 

tively!.     These should be compared with Figs. 3,   9(a) and (b),   respectively.    We note that: 

(1) On-boresight,   the simulation results lie above the bounds at OdB,   move 
closer as E/NQ is increased,   and are essentially converged at 20 dB. 

(2) If the simulation results were compared with the bounds in Fig. 16,   i.e.. 
with bounds computed disregarding the off-axis bias,   the results would 
appear to violate the bounds (compare Figs. 16 and 3 at 0 dB and 100 pulses). 

(3) Off-boresight,   the results again satisfy the bounds,   and converge to them 
as E/N0 is increased to 20dB. 

(4) At all angles,   as E/N0 is increased the bounds approach those for the 
unbiased estimator shown in Fig. 16,   in agreement with the decrease in 
bias as E/N0 is increased in Figs. 9(a) and (b). 

(5) As with the maximum-likelihood estimate,   the precision does not approach 
the bound for low E/N0 and large N. 

IV.   COHERENT PROCESSING 

A.    Approximate Estimator 

1.      On-Boresight Results 

The basic performance of the approximate coherent estimator on-boresight is shown in 

Fig. 18.    We note that: 

(1) The estimate is unbiased. 

(2) At SNIls of 1 0 dB or more,   the precision is essentially identical to that 
of the approximate incoherent estimator.     That is,   there is no difference 
between coherent and incoherent processing in how the precision improves 
with E/N0 or N.     In both cases,   there is a limiting inverse square-root 
dependence. 

17 
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(3)    At OdB,   the precision is inferior to that of the incoherent estimator. 
At 100 pulses,  the coherent precision is about halfway between that of 
the approximate incoherent estimate (Fig. 3) and the maximum-likelihood 
incoherent estimate (Fig. 14).    As mentioned in Sec. III-B-1,   recall that 
in the incoherent case the bound on an unbiased estimator falls below 
the maximum-likelihood performance and above the bound on the approx- 
imate estimator.    As will be seen below in Sees. IV-B and -C and Appen- 
dix B,  the bound on an unbiased estimate is the same in the coherent and 
incoherent cases,   and the approximate coherent estimator is unbiased 
and asymptotically efficient and hence converges to this bound.    This 
accounts for the value of the coherent precision relative to that of the in- 
coherent estimates. 

2. Off-Boresight Results 

The performance at true target angles of 0.5 and 1 is shown in Figs. 19(a) and (b).    We note 

that: 

(1) The single-pulse estimate is again biased,   since it is identical to the 
incoherent single-pulse estimate.    However,  the bias rapidly drops 
off as pulses are integrated,  and is undetectable at 1 0 pulses,  even at 
an E/N0 of OdB.    The big advantage of coherent processing is the be- 
havior of the bias,   not the behavior of the precision.    In terms of the 
phase-angle reasoning of Sec. III-A-2-a,  the reason for the disappear- 
ance of the bias lies in how the carrier phase angle $   is being estimated. 
Since the argument of the coherently summed samples in the sum channel 
is being used to estimate  ii,   the uncertainty in i/   at low E/No rapidly 
drops from ±ir to near zero as pulses are integrated.    Since the cosine 

term in the coherent estimator is cos (vi^ — i),  only the uncertainty in 
Vlk'   ±lr/2.   remains after integration.    Thus,  the probability of a negative 
sign drops,   and the bias vanishes. 

(2) As with incoherent processing,   the precision degrades off-boresight,   the 
degradation factor reaching 1.4 at 6 - 1.    The coherent and incoherent 
precisions are essentially identical above 10dB. 

3. Effect of Phase Errors 

The coherent estimates are based on the assumption that the unknown target phase angle 

is constant over the set of pulses integrated.    We examined the effects of two types of phase 

errors on the performance of the approximate coherent estimator on-boresight. 

a.   Random Pulse-to-Pulse Jitter 

This type of phase error could represent an oscillator instability, target glint, etc. Fig- 

ures 20(a) and (b) show the effects of phase jitter uniformly distributed between ±TT/2 (rms jit- 

ter -: 52°) and ±7r (rms jitter = 104"),   respectively.    We note that: 

(1) There is a surprising tolerance to the 90° jitter,   i.e..   there is still an 
"integration gain," although it is somewhat reduced.    The reduction in 
integration gain is roughly independent of E/N0.    For example [see 
Figs. 18 and 20(a)],   at OdB the integration  gain for 100 pulses is 14 
without jitter and 8.5 with jitter,   a degradation factor of 1.65.    At 20 dB, 
the integration gain is 10 without jitter and 6.45 with jitter,   a degradation 
factor of 1. 55. 

(2) The 180° jitter wipes out any benefits of integration. Precision is equal 
to or worse than the single-pulse precision for any number of pulses in- 
tegrated up to 100,   at any SNR. 
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Fig. 20(a-b).    Coherent integration, target on-boresight. 

b.   Systematic Pulse-to-Pulse Drift 

The angle estimators were derived assuming that the carrier frequency of the target return 

was known.    If the target doppler shift is not known perfectly,  the effect will be to introduce a 

systematic phase progression into the sequence of pulses being integrated.    Typically,   a receiver 

might be set up with a bank of doppler filters,  be they offset filters,   staggered oscillators,  etc., 

with responses crossing over at about the doppler resolution of the radar signal.    Thus,   a target 

may be offset in doppler anywhere between zero and the doppler resolution with respect to the 

peak of the closest doppler channel.    An offset relative to the center of a doppler channel intro- 

duces an equivalent phase drift between pulses.    If no further doppler processing is done in the 

radar to refine the doppler accuracy to better than the resolution,   the phase shifts can be sig- 

nificant.    Figures 21(a) through (c) show the effects of systematic interpulse phase shifts of 5°, 

30°,   and 90°,   respectively,   on the precision of the coherent estimator on-boresight.    We note 

that: 

(1) Only 5° of phase shift is enough to halt the improvement of precision vs 
number of pulses at N - 30,   and to degrade the precision beyond that point. 

(2) With 30° of phase shift, there is no integration gain at all. For E/NQ of 
1 0 dB or more, the precision degrades from its single-pulse value as N 
is increased.    At 0 dB,   the precision is essentially independent of N. 

(3) With 90° of phase shift,   the rate of degradation is accentuated,   and is 
more pronounced at the higher SNRs. 
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B.    Maximum-Likelihood Estimator 

Figure 22 shows the performance of the maximum-likelihood coherent estimator on-boresight. 
Comparison with Fig. 18 reveals that the performance is virtually identical to that of the approx- 

imate estimator.    While we have not run this estimator off-boresight,   it coincides with the inco- 

herent maximum-likelihood estimator at 1 pulse,   and thus has less bias than the approximate 
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coherent estimator at 1 pulse off-boresight [see Figs. 15(b) and 19(b)].    The bias drops off so 
quickly with N for the approximate coherent estimator that there is no reason to use the exact 
estimator with its required search in the coherent case. 

C.    Theoretical Bounds on Precision 

We have seen above that the approximate estimator is unbiased at any value of 6 or E/N , 

once a few pulses are integrated. Thus, certainly for 10 pulses or above, we can compare the 
results of Figs. 18 and 19(a) and (b) with the bounds of Fig. 16 which apply to any unbiased esti- 

mator of  6.    The results essentially obey the bounds and converge to them not only for high 
E/N  ,   as in the incoherent case,  but also for large  N  at low E/N  .    That is,   the coherent esti- '   o' 6 '    o 
mator is asymptotically efficient even for low-per-pulse E/N .    In the coherent case,   the N 
observations all contain a common phase shift i>,   and are therefore identically distributed.    The 
maximum-likelihood estimator is then asymptotically efficient,   and must converge to the bounds 
of Fig. 16 as   N   increases,   even when E/N    is low. o 
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APPENDIX A 
MONOPULSE ANGLE  ESTIMATORS 

This Appendix describes the derivation of the maximum-likelihood-angle estimates and their 
approximations,  and is abstracted from Ref. 1. 

Consider a set of b  beams,  each containing a filter matched to the pulse shape,   range,  and 

doppler of the target of interest.    On each radar pulse, the matched-filter output is sampled at 

the time of peak output due to target.    The complex number or sample obtained in the i     beam 

on the k     pulse is then 

**k 
•A Ae      G.(G, <p) + n.,       ,       1 ^ i <; b      ,       l<k^N      . (A-l) 

1 IK 

A  and i/.   are the amplitude and phase of the output due to target,   A  being independent of k.    A 
coherent case is defined in which #,   = 4 independent of k,   for all k.    An incoherent case is de- 
fined in which the k phase values i/,   are k distinct parameters.    The function G(Q. tp) specifies 
the shape of the i     beam as a function of the two spatial angles 0   and  <p.    The complex noise 
sample n.,   is composed of quadrature components as 

n.,   = n..      + in., (A-2) 
lk        ike     J   iks 

where the quadrature components are assumed to be zero mean real Gaussian variates with 
2 

known variance a    independent of k.    The noise is assumed independent from beam-to-beam and 
from pulse-to-pulse. 

Define b-dimensional column vectors as 

T , 
yk - iytk- • -ybk! 

\ = lnik- • • nbk] 

GT(e, <p) = [Gi(e,<p)... Gb(e, <p)] 

T an N-dimensional vector ip     = [<p,. . .4>jA,  and the b x b  diagonal covariance matrix 

A    = E(n, n.T¥) = 2CT
2

I, o        v-k~k b 

where T  denotes transposition,  *   indicates complex conjugation,  and I,   is the b x b unit matrix. 

We can write the probability of the received samples on the k     pulse given values of A, $., 9, 
and (p  as 

i \    I ji/,k   \T*    -1/ J*k    \l P(yk/A.^,e,„)=-E-—  exp[-(yk-Ae    kc)     AQ    (yR - A e    kc)j (A-3) 
'    o' 

where 

| A    |  = determinant (A   ) = (2a  ) . (A-4) 

The conditional probability of receiving the total set of data y.. . . yN is then 
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p(yr . .yN/A,j*,e, <p) Nb,. 
7T A 

exp 

N 

y 
Li 

k=l 

/ %  \T*  -1/ i*k \1 (yk-Ae   kG)    Ao^-Ae   ko)j (A-5) 

The likelihood-ratio  L is the ratio of this probability to that of receiving the data given no tar- 

get (A = 0),  and can be written as 

N 

L = exp 

k=l 

(A-6) 

We want to solve for the values of A, $, 9, and <p which jointly maximize L, and use the result- 

ant values 9 and <p as estimates of the spatial angles 6 and ip. L will be maximized if we max- 

imize the quantity 

N 
-Pv 

« Re' E ibAo±A e   k°' " A
2
G

T
A;

1
G 

k = l 
—      o   — 

If we define 

\ 
1   V 
\T /  i 

-i*i 
w=Re  |^   L    yke 

k=l 

(A-7) 

(A-8) 

we want to maximize 

T     -1 2    T     -1 
2Aw*A      G-A   G   A      G      . -       o   — —      o   — 

Differentiating with respect to A yields a maximizing value of A as 

A = 
w   A      G — o   — 

T    -1 
G   A      G — o   — 

Substituting back into expression (A-9),   we obtain the remaining maximization 

r(wTA~1G)2'' —      o   — 
T    -1 

4>,Q,<p   L    G   A      G 

(A-9) 

(A-10) 

(A-ll) 

which,   upon substitution of Eq. (A-8),  becomes 

max 
[* j, -(J^V* n\ 

T    -1 G   A      G —      o   — 

(A-12) 

In the incoherent case,  we will obtain a maximum with respect to 4>  if each term within the 

real part operator is made real,   i.e.,   if 

*k = -ars fck^o1^ (A-13) 
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This leaves us with a maximization 

& h-"'^'Gj) 
max pyi 5  
0,<p G   A"  G 

A A 
which defines the desired angle estimates 9 and  (p. 

In the coherent case,  expression (A-12) will be maximized if 

N 

(A-14) 

2 
^k = $ = -arg (   J    y^*A'4Q]       ,       all k (A-15) 

which leaves a maximization 

N        T*     _, 
Z    yk    Ao   S k=l - 

max  - • -,  (A-16) 
0,</> G   A      G —      o   — 

defining the desired angle estimates  0 and  <p. 

In the special case of a single spatial angle e and two beams,  one constant vs 0 and the 

other linear in 0,   so that 

b = 2      ,       GT(0) = [0,11 (A-17) 

expressions (A-14) and (A-16) reduce to the exact estimators of Sec. II,   Eqs. (1) and (2). 

To obtain approximations to these estimators,  we backtrack to expression (A-ll),  and max- 

imize it first with respect to 0 and   tp,  holding w   (that is  >p) fixed.    Applying the Schwartz in- 

equality for vectors to (A-ll) results in 

(w   A      G) T    _i 

 f—~\ < E   Ao   w       • (A-18) 
G   AQ   G ° 

Equality is achieved in this expression only if a scalar  a  can be found such that 

G = cvw       . (A-19) 

Assuming that the functional form of G  is such that Eq. (A-19) can be satisfied for any w,  the 

remaining maximization becomes 

T    -1 
max w   A      w      . (A-20) 
I     ~       °   ~ 

Without specifying how this operation is explicitly performed,   we can denote the maximizing set 

of phases by 

/\rr       A A 
*    =[*4...*N1 (A-21) 

in terms of which Eq. (A-19) specifies the resultant spatial angle estimates 0 and  tp  as 

/      N A > 
A    A A /   1 v-1 ~J"'k\ 

G(0, 9) = ow = a Re hj   ),   2k 
e       I        • (A-22) 

^     k=l ' 
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If we now assume two beams,  and one spatial angle Q,   Eq. (A-22) becomes 

N "ft 

G2(e) 

Re    S    y.k e 
k=l     1K 

Re    Z^  y2k e 

(A-23) 

where G1 and G2 are the scalar patterns of the two beams.    To proceed,  we must make explicit 
how the phase estimates ip  are to be made.    If we think of G. as representing a difference beam, 

and G-> a sum beam,  it seems as reasonable as anything else to use the phase angle of the sum 
beam sample as the estimate ip.   on each pulse in the incoherent case.    That is, 

Jk = arg(y2k) 

Equation (A-2 3) then becomes 

Gl(e)      *t  lyiiJ cos(^ik-^2k) 

G2(6) N 
S 

k=l '2k' 

(A-24) 

(A-25) 

where 

^lk = arg(ylk) 

^2k=arg(>-2k' 

Kinally,  assuming that 

GT(9) = [9,1] 

[which satisfies Eq. (A-19)],   results in the explicit approximate incoherent estimator: 

N 
S    |y     | cos(^k-%) 

9 R      . 

(A-26) 

(A-27) 

(A-28) 

In the coherent case,  it seems reasonable to take the phase estimate ip  as the phase of the 
coherently summed samples in the sum beam.    That is, 

A 
$ = arg 

N 

I    y2k 
Lk=l 

(A-29) 

The resultant explicit approximate coherent estimator is: 

N 
s     |y1kl cos((p      - £) 

fi      k=1       IK lk 

\ 

k=l 
y2k 

(A-30) 

Equations (A-28) and (A-30) match Eqs. (3) and (4) in Sec. II. 
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APPENDIX B 

THEORETICAL BOUNDS TO ESTIMATOR  PRECISION 

Theoretical bounds on the precision of an estimate can be obtained by starting with the 
3 

•ix form of the Cramer-Rao inequality.      This can be stated as follows. 

Consider an a-dimensional vector of parameters   a,  and a vector estimate of a   denoted 

Q as 

3 
matrix form of the Cramer-Rao inequality.      This can be stated as follows. 

L-dimensional vector of parameters   o,  and a v 

by a.    Let m = E(a) denote the expected value of the estimate  a.    Define an  a x a  matrix 

am 
Q=^ (B-l) 

that is,   the i-j element of Q   is 

9m. 
Q.. =   _i (B-2) 1,1       pa. l ' 

where m. and a. are the scalar components of m and  a.    Let p represent the conditional prob- 

ability of the received data: 

P = P(yr--yN/o) (B-3) 

where y,. . . yN are the received or observed complex vector samples on N pulses or trials. 

The dimension of the vector y, is equal to the number of beams b in our case. In terms of 

p,   define the  a x a  matrix   A  as 

A = E[(-^(3-#-P)T] <»-<> 
where ? lnp/9o is an a-dimensional column vector whose k     element is 9 lnp/90, . 

The Cramer-Rao inequality states that the covariance matrix of the estimate S  obeys 

C = E[(a -m) {a -m)T) >QTA_1Q (B-5) 

where the inequality sign denotes positive definiteness.'     In particular,   if we are interested in 

the variance of a particular component of  a,   Eq. (B-5) implies that the appropriate diagonal 
T   -1 element of C  is greater than or equal to the corresponding element of Q   A     Q. 

Note that the inequality depends on the mean or expected value of a.    If the estimate   a   is 

unbiased,   then 

m = a (B-6) 

and Q becomes a unit matrix.    The inequality 

C > A~i (B-7) 

then applies to any unbiased estimate a,  and one can talk about the relative efficiency of two 

unbiased estimates in approaching the bound.    If the estimate is biased at any value of the 

parameters  a,   then the bound cannot be computed unless the dependence of m on o   is known. 

f Equation (B-5) implies that the matrix C —Q   A    Q is non-negative definite. 
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Furthermore,  any two biased estimators will,  in general, have different bias performance. 
This means that the bound changes for each estimate,   and one cannot talk about how closely the 
two estimates approach a common bound as in the unbiased case. 

If one assumes that  a   is unbiased,  at least for some values of E/N    and N,  we see then 
that the bound (B-7) can be used to get a lower bound on precision without running a simulation. 
The bound is valid if the assumption is correct.    If one further assumes that  a   is "asymptotically 
efficient" for large enough E/N  ,  and turns out to be correct,  then the actual limiting value of 

the precision has been obtained with no simulation. 

When a   is biased,   the bound has less utility.    The bias behavior must be determined either 

by analysis or simulation.    The bound then obtained can be used as a check on the performance 
determined by simulation. 

We will obtain below the bounds on the unbiased estimators in the incoherent and coherent 

cases,  and the bounds on the biased approximate incoherent estimator of Sec. III-A. 
Consider first the matrix   A.    Assuming zero mean Gaussian noise,   independent from beam- 

to-beam and from pulse-to-pulse,  of known variance a    (variance of real RF or IF noise and 
each of its quadrature components),   allows us to write 

N 

ir       A 1    o 
p(yr--zN/s)=  bN '   N exP - I <zk-iik

)T!' Aoi{ik-*k] 

k=l 

(B-8) 

Here,   b  is the number of beams;  N  is the number of pulses; a   is a parameter vector whose 
components are  N phase angles i,,   target amplitude A,   and spatial angle  9  in the incoherent 
case and a common phase angle  if,  A,  and ©  in the coherent case;  and (a,   is the mean of the 
k     vector observation 

IK 
uk = E(yk) = A e    K G(G)      . (B-9) 

G(6) is the vector of beam patterns,  and the covariance matrix A    is 

A    = 2a
2 I. (B-10) o b 

2 
i.e.,   2a    times a unit matrix of dimension b. 

Using Eq. (B-8) and recognizing conjugate terms,  we obtain 

N T* NT* 
9i£P=2Hey      |^-A-d(yt-,) = 2Re    V     ^-   A "V (B-ll) dot. u       da. o    'ik      t-k u       da.        o   -k v ' 

1 k=l S k=l 

where n,   is the complex vector noise sample on the k     pulse.    From Eq. (B-4),   the i-j element 
of  A   is 

A.. = E Id Inp 
[da. 

8 Inp 
8cv . 

Using Eq. (B-il) and the identity 

Re (AB) + Re (AB*) = 2 Re (A) Re (B)      ,       A, B complex scalars (B-12) 
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and using the assumed noise independence properties 

E<0kn1
T*) = 2a2 6^      ,       E^n^) = 0 (B-13) 

we obtain 

Now,   separate   a  as 

N     .   T* 

-^— A       -^     .                                                                     (B-14) 3a. o     8a. 
k=l          X •> 

T 
2     = [y, 4>.. • • • , ^-vil incoherent 

T a     = [y, ip] coherent (B-15) 

where y  contains the non-phase angle components as 

yT = [A,el       . (B-16) 

In these terms,  the means u,   are given by 

j ip, j ip, j ip, 
^(a) = E(yk) = E(Ae    K G(e) + nk) = e    K AG(0) = e    K A(y)       . (B-17) 

Thus,   the partial derivatives in Eq. (B-14) are 

9^k JK 
~r-   -  ]6., e       A(y) i = 1,N incoherent 
dip-        J  ik — - 

I 

^k j e" A(y) coherent 

-^   = e    K       a   ~ i=l,2       . (B-18) ay. 8y. 

Consider anv  A.,  for which a. is an element of y,  and a. is a phase i>. .    Any such term is 

zero because of the real part operator in Eq. (B-14) coupled with the  j = *J — i in Eq. (B-18).    If 

a . and a. both correspond to elements of  y,   we obtain 
i J - 

9AT(y) 3A(y) 
A.. - 2N  —    A        —  (B-19) ij 0y{        o       ay. 

while if a. and a. correspond to phase angles ip. and ip.,  we obtain 

T -1 
A.. = 2A   (y) A     A(y)6.. incoherent 

ij        -   'X'     o   —1'    lj 

A.. = 2NAT(y) A _iA(y) coherent        . (B-20) ii —     -      o  — - 
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Thus,  the matrix A      is 

2X2 2 X N 

i-j element is S~*\ 
8AT(y)        , 

2N   —    A -1 

3yi         o 

8A(y) o 
N X 2 N x N,  diagonal,  all 

diagonal elements are 

I    o 2AT(y) Aj4 A(y) 

incoherent        (B-21) 

or 

2X2 2 x l 

i-j element is 
•—x 

3AT(y)         , 
2N       0   ~    A -1 

dy{         o 

BA(y) o 
arj 

1 X 2 o 1  X 1 

element is 

2NAT(y) Aj1 A(y) 

coherent (B-22) 

We see that the upper left-hand submatrix of   A,   which we will denote by A    and which contains 

the terms corresponding to the variances of the A  and 9  estimates,  is the same in the coherent 

and incoherent cases.    To obtain the bound on the variance of any unbiased angle estimate 0, 

we must evaluate the 2-2 term of A •1 Remembering that 

YT = [A, 81 

and introducing the constant sum beam-linear difference beam assumption 

AT(y) = [AG,A] 

the relevant partials are 

(B-23) 

(B-24) 

3AT(y) 

~8A^ 

3AT(y) 

89 

[e,i] 

[A.O] (B-25) 

and using 

2 a 

0 

(B-26) 

2 a 
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we obtain 

and 

A N 

Al= 1 
a 

-i 

(i + e )   Ae 

2 Ae A 

-e/A 

-e/A 

a +e2) 

Thus,   using Eq. (B-7),  we have obtained the lower bound on angular precision as 

a 
IN   A2 a + e 

1/2 

and,  recalling our convention that 

A! 
2 

O CT 

the bound becomes 

K_ 
N 

G 
1      1 
N E/N d+e2)| ^2 

(B-27) 

(B-28) 

(B-29) 

(B-30) 

(B-31) 

matching Eq. (7) of Sec. III-C--I. 

To obtain the bound in the biased case,  we must evaluate the matrix Q of Eq. (B-l) using 

the bias data from the simulation.    We begin by partitioning the Q matrix as 

Q = 

R s 

V 

(B-32) 

R is 2 x 2 and contains the partials of m  with respect to  A   and  0   (a    and a<   ).    In the incoherent 

case,   V is N x N,  S is 2 x N,  and  U is N x 2.    In terms of these submatrices,  the upper left- 
T   -i hand 2X2 submatrix of the bounding matrix Q   A     Q is 

Cy = RTA _1R + UTA2
_1U (B-33a) 

where 

A   = 

"Al 
0 

2X2 

N x N 

0 A2   _ 

(B-33b) 

•y A 
We are specifically interested in the 2-2 term of C  ,  which is the bounding variance of 0.    The 

T    -i contribution to this term by the product U   A      U is 
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N 

C£«L     2   U^2 (B-34) 
k=l 

where  L  is the common diagonal term of A     ,  and the summation is the sum of the squares of 
the elements of the second column of U.    The second column of U contains the elements Q 

which,  using Eq. (B-2),  are 
k2 

3m- 
Lk2 "  a^k  -   a*k      • (B"35) 

Because the complex noise samples in each channel are distributed with circular symmetry, 
A 

the statistical properties of any estimator 0  will be independent of the $..    Thus,  the U, _ are 
/\ x T    -1 zero,  and there is no contribution to the bounding variance of 0 by the term U   A_    U. 

T    -1 The problem is then reduced to determining the elements of R.    The 2-2 term of R   A     R is 

^2 " »«*« + «22*22 + 2R12H22X12 (B"36) 

where the \s are the elements of A     ,  and we have used the fact that A    is real and symmetric. 
Thus,   the elements needed are R,_, and R.„   i.e., 12 22 

R       _   9^2   _   8E(S) 
12     ay1       "aS- 

8m 8E(e) R22 »   ayf • -W     • (B"37) 

These partials were evaluated at various values of A,  9,  and N by making small perturbations 
in A  and 0,  running the simulation of the approximate incoherent estimator,   and taking ratios 

-\ 
of finite differences.    The matrix A        has already been determined in Eq. (B-28).     By combining 

R  and   A      in accordance with Eq. (B-36),   the bounds of Figs. 17(a) through (c) were obtained. 
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